Papers

My papers on arXiv
My Google Scholar page
My MathSciNet profile

  1. Quantum trace map vs quantum UV-IR map
    with Samuel Panitch
      in preparation

  2. Quivers and BPS states in 3d and 4d
    with Piotr Kucharski, Helder Larraguivel, Pietro Longhi, Dmitry Noshchenko and Piotr Sulkowski
      in preparation

  3. Skein traces from curve counting
    with Tobias Ekholm, Pietro Longhi and Vivek Shende
      in preparation

  4. Knot lattice homology and q-series invariants for plumbed knot complements
    with Rostislav Akhmechet and Peter K. Johnson
      preprint [arXiv:2403.14461]

  5. 3d quantum trace map
    with Samuel Panitch
      preprint [arXiv:2403.12850]

  6. Branches, quivers, and ideals for knot complements
    with Tobias Ekholm, Angus Gruen, Sergei Gukov, Piotr Kucharski, Marko Stošić and Piotr Sułkowski
      J. Geom. Phys. 177 (2022), 104520 [journal | arXiv:2110.13768]

  7. Inverted state sums, inverted Habiro series, and indefinite theta functions
      preprint [arXiv:2106.03942]

  8. Cobordism invariants from BPS q-series
    with Sergei Gukov and Pavel Putrov
      Ann. Henri Poincaré 22 (2021), 4173-4203 [journal | arXiv:2009.11874]

  9. $\hat{Z}$ at large $N$: from curve counts to quantum modularity
    with Tobias Ekholm, Angus Gruen, Sergei Gukov, Piotr Kucharski and Piotr Sułkowski
      Comm. Math. Phys. 396 (2022), 143-186 [journal | arXiv:2005.13349]

  10. Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants
    with Sergei Gukov, Po-Shen Hsin, Hiraku Nakajima, Du Pei and Nikita Sopenko
      J. Geom. Phys. 168 (2021), 104311 [journal | arXiv:2005.05347]

  11. Large color R-matrix for knot complements and strange identities
      J. Knot Theory Ramifications 29 (2020), no. 14, 2050097 [journal | arXiv:2004.02087]

  12. 3d-3d correspondence for mapping tori
    with Sungbong Chun, Sergei Gukov and Nikita Sopenko
      J. High Energy Phys. 09 (2020), 152 [journal | arXiv:1911.08456]

  13. Higher rank $\hat{Z}$ and $F_K$
      SIGMA 16 (2020), 044, 17 pages [journal | arXiv:1909.13002]

PhD Thesis


A piece of recreational mathematics


Mathematica files